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We study the effect of splitting and Zitterbewegung of one- and two-dimensional electron wave packets in
the semiconductor quantum well under the influence of the Rashba spin orbit coupling. Results of our inves-
tigations show that the spin orbit interaction induces dramatic qualitative changes in the evolution of spin-
polarized wave packet. The initial wave packet with spin polarization splits into two parts, which propagate
with unequal group velocity. This splitting appears due to the presence of two branches of electron spectrum
corresponding to the stationary states with different chirality. It is also demonstrated that in the presence of
external magnetic field B perpendicular to the electron-gas plane the wave packet splits into two parts, which
rotate with different cyclotron frequencies. It was shown that after some periods, the electron density distrib-
utes around cyclotron orbit and the motion acquires an irregular character. Our calculations were made for both
cases of weak and strong spin orbit couplings.
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I. INTRODUCTION

Producing and detecting spin-polarized currents in semi-
conductor nonmagnetic devices are the ultimate goals of
spintronics. The intrinsic spin orbit interaction1 existing in
low-dimensional systems, which couples electron momen-
tum to its spin, is one of the most promising tools for real-
izing spin-polarized transport. For these reasons, during the
last years, a substantial amount of work has been devoted to
study effects of spin orbit interaction on the transport prop-
erties of nanostructures �for a review, see, e. g., Refs. 2–4�.

For the first time, the electron wave packet dynamics in-
cluding the problem of Zitterbewegung in semiconductor
quantum well under the influence of the spin orbit Rashba
and Dresselhaus coupling has been considered by Schli-
emann et al.5,6 In this work, the oscillatory motion of the
electron wave packets reminiscent of the Zitterbewegung of
relativistic electrons was studied for free-electron motion,
i.e., in the absence of electric or magnetic fields. The authors
of Refs. 5 and 6 predicted the resonance amplification of
Zitterbewegung oscillations for the electron �moving in a
quantum wire with parabolic confinement potential� and pro-
posed to observe this fundamental phenomena, experimen-
tally, using high-resolution scanning probe microscopy imag-
ing techniques.

The Zitterbewegung of the heavy and light holes in three-
dimensional �3D� semiconductors was investigated in Ref. 7.
In this paper, the semiclassical motion of holes in the pres-
ence of a constant electric field was studied by numerical
solution of the Heisenberg equations for momentum and spin
operators in the Lattinger model of spectrum. It was shown
that the hole semiclassical trajectories contain rapid small
amplitude oscillations reminiscent of the Zitterbewegung of
relativistic electrons. It should be noted, however, that the
spatial structure of the wave packet and the changing of its
shape due to effect of splitting in Refs. 8 and 9 was not
considered.

At the same time, the splitting of spin-polarized electron
beams in the systems with spin orbit coupling was investi-

gated in a series of works. In particular, the authors of Refs.
8 and 9 propose to use the lateral interface between two
regions in gated two-dimensional �2D� heterostructure with
different strength of spin orbit coupling to polarize the elec-
tron. They have shown theoretically that in this structure, a
beam with a nonzero angle of incidence splits into some
spin-polarization components propagating at different angles.
The similar effect of electron-spin-polarized reflection in het-
erostructures and spatial separation of the electron beams
after reflection has been observed experimentally in Ref. 10.

The transverse electron focusing in systems with spin or-
bit coupling in the presence of perpendicular magnetic field
was theoretically analyzed in Ref. 11, where it was shown
that in the weak magnetic-field regime and for a given en-
ergy, the two branches of states have different cyclotron ra-
dii. The effect of spatial separation of the electron trajecto-
ries of different spin states, in a perpendicular magnetic field,
has been experimentally observed in Ref. 12.

The authors of Refs. 13 and 14 considered the interplay
between the spin orbit coupling and cyclotron motion in a
perpendicular magnetic field, using the analogy between the
Jaynes-Cumming model of atom transitions in a radiation
field and the Rashba Hamiltonian in a perpendicular mag-
netic field.

In a recent paper by Schliemann,15 the modifications of
classical cyclotron orbits due to Rashba linear spin orbit cou-
pling were explored. It was shown that the center of the wave
packet moves on the more or less distorted spiral trajectories
which forms depend on the initial spin orientation. So, the
electron dynamics is not adequately described by semiclas-
sical approximations. The numerical calculations of the ex-
pectation value of the packet coordinates x̄�t� and ȳ�t� and
packet width were made for the total time equals to five to
six cyclotron periods.

In this work, we study the striking dynamics of the elec-
tron wave packets in a narrow A3B5 quantum well at the
presence of the spin orbit k-linear Rashba coupling, which
arises due to structural inversion �”up-down”� asymmetry.
The splitting of the wave packets in two parts appears due to
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the presence of the electron states with ”plus” and ”minus”
chiralities, which propagate with different group velocity.
These two parts of the split packet can be characterized by
different spin density. It is found that electron trajectories
contain small amplitude damped oscillations. We show that
the packet splitting leads to the damping of Zitterbewegung.
The splitting and Zitterbewegung of wave packet is naturally
accompanied by its broadening due to the effect of disper-
sion.

We also investigate the atypical cyclotron dynamics of the
wave packet in a perpendicular magnetic field. It was shown
that due to the spin orbit coupling, the packet with spin par-
allel to the magnetic field splits into two parts, which rotate
with different cyclotron frequencies. We determine the mo-
ments when two parts of the packet are located at opposite
points of the cyclotron orbit and, after that, they return
�many times� back to their initial state. With the time due to
the incommensurability of the cyclotron frequencies and the
ordinary packet broadening, the electron density distributes
randomly around the cyclotron orbit. All our calculations
were made for the material parameters of the real semicon-
ductor structures with a relatively strong and weak spin orbit
and Zeeman interactions.

The paper is organized as follows. In Sec. II we introduce
the Green’s functions for 2D electrons in the presence of
Rashba spin orbit interaction and analyze the evolution of
one-dimensional �1D� wave packet. The analytical and nu-
merical results illustrate the effects of packet splitting and
Zitterbewegung. In Sec. III we describe in detail the time
development of the 2D wave packets. Finally, in Sec. IV, we
discuss the manifestation of the spin orbit interaction in the
evolution of coherent wave packet in a magnetic field per-
pendicular to electron-gas plane. The splitting of the initial
coherent packet and distribution electron probability via cy-
clotron orbit is considered. Section V concludes with a dis-
cussion of the results. The Appendix provides the mathemati-
cal details necessary to obtain Eqs. �36a� and �36b�.

II. DYNAMIC OF THE ONE-DIMENSIONAL WAVE
PACKETS

In this section we consider the specific character of the
wave packet dynamics in the systems with Rashba spin orbit
coupling.1 The Hamiltonian of the system under consider-
ation reads

H = H0 + HR =
p2

2m
+ ��p̂y�̂x − p̂x�̂y� , �1�

where p=−i�� is the momentum operator, m is the electron
effective mass, � is the Rashba coupling constant, and the
components of the vector � denote the spin Pauli matrices.
The eigenfunctions for the in-plane motion identified by the
quantum numbers p�px , py� are

�p,s�r� =
1

2�2��
eipr� 1

− isei� � . �2�

Here � is the angle between the electron momentum p and x
axis, so ei�= px+ ipy / p; s= �1 denotes the branch index. The

energy spectrum of the Hamiltonian �1� corresponding to two
branches has the form

	��p� =
p2

2m
� �p , �3�

where p=�px
2+ py

2. Using the definition v̂=dr /dt= i /��H ,r�,
one can obtain from Eq. �1� the velocity operator compo-
nents,

v̂x =
px

m
− ��y, v̂y =

py

m
+ ��x. �4�

To analyze the time evolution of electron in the initial
states, we use the Green’s function of the nonstationary
equation, which is a nondiagonal 2
2 matrix,

Gik = �G11 G12

G21 G22
� . �5�

Here i ,k=1,2 are matrix indexes and matrix elements can be
written as integrals,

Gik�r,r�,t� = �
s
	 dp�ps,i�r,t��ps,k

� �r�,0� . �6�

In this section, we examine in detail the dynamics of the
quasi-1D wave packet in 2D system with spin orbit coupling.
This problem allows the analytical solution. Let at the initial
time t=0 wave function to be a plane wave with wave num-
ber p0x modulated by a Gaussian profile and spin polarized
along the z direction,

��r,0� = ��x,0� = C exp�−
x2

2d2 +
ip0xx

�
��1

0
� = f�x��1

0
� ,

�7�

where coefficient C is equal to �1 /dLy
���1/2 and Ly is the

size of the system in the y direction. The variance of the
position operator 
��x�2� in this case is equal to d2 /2 and the
variance 
��y�2� exceeds this value. The variance of the mo-
mentum operator px is 
��px�2�=�2 /2d2 and the average p̂ is
equal to p0x. One may consider the initial wave function as
the limiting case of a 2D packet with the width along y
direction, which is much greater than along x, i.e., Ly 
d.

The electron wave function in any arbitrary moment of
time can be found with the help of the Green’s function,

��1�x,t�
�2�x,t�


 =	 dx�dy��G11f�x��
G21f�x��


 , �8�

where matrix elements G11 and G21 of the matrix �5� are
determined by Eqs. �2�, �3�, and �6�,

G11�r,r�,t� =
1

�2���2	 exp�−
ip2t

2m�
+

ip�r − r��
�

�

cos��pt

�
�dp , �9�
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G21�r,r�,t� =
1

�2���2	 exp�−
ip2t

2m�
+

ip�r − r��
�

�

sin��pt

�
� px + ipy

p
dp . �10�

By using the formula

eiq cos � = J0�q� + 2�
n=1

�− 1�nJ2n�q�cos�2n��

+ 2i�
n=1

�− 1�n+1J2n−1�q�sin��2n − 1��� �11�

and by integrating over the angle variable in Eqs. �9� and
�10�, we finally have

G11 =
1

2��2	
0

�

exp�− i
p2t

2m�
J0� p�r − r��

�
�cos��pt

�
��pdp ,

�12�

G21 =
�x − x�� + i�y − y��

2��2�r − r�� 	
0

�


exp�− i
p2t

2m�
J1� p�r − r��

�
�sin��pt

�
��pdp ,

�13�

where J0 and J1 are Bessel functions. Substituting Eqs. �12�,
�13�, and �7� into Eq. �8� and integrating over x� and y�, we
find the analytical expression for the spinor components
�1,2�x , t�. It should be noted that two electron bands with
chirality “plus” and “minus” give different contribution to
the electron wave functions. The calculation of the expres-
sions for �1,2 leads to the following electron probability den-
sities ��1�2 and ��2�2 at any arbitrary moment of the time,

��1�2 =
C2

�1 + �2t2�exp�−
„x + �� − �k0/m�t…2

d2�1 + �2t2� �
+ exp�−

„x − �� + �k0/m�t…2

d2�1 + �2t2� �
+ 2 exp�−

„x + �� − �k0/m�t…2 + „x − �� + �k0/m�t…2

2d2�1 + �2t2� �

cos�2�k0d2 + �tx��t

d2�1 + �2t2� �� , �14a�

��2�2 =
C2

�1 + �2t2�exp�−
„x + �� − �k0/m�t…2

d2�1 + �2t2� �
+ exp�−

„x − �� + �k0/m�t…2

d2�1 + �2t2� �
− 2 exp�−

„x + �� − �k0/m�t…2 + „x − �� + �k0/m�t…2

2d2�1 + �2t2� �

cos�2�k0d2 + �tx��t

d2�1 + �2t2� �� , �14b�

where �=� /d2m is the inverse broadening time p0x=�k0.
As follows from Eqs. �14a� and �14b�, the shape of the

function ��x , t� essentially depends on the parameter �

= m2�2d2

�2 . In the wide packet case, when the momentum vari-
ance is much more �m��2 and the inequality ��1 takes
place, the evolution looks like that in the absence of Rashba
term. Otherwise when �
1, the initial wave packet splits
into two parts, which propagate with different group velocity,
so the distance between these two parts increases linearly in
time. These two parts correspond to the first and second
terms in square brackets in Eqs. �14a� and �14b�. The third
terms in Eqs. �14a� and �14b� describe the oscillation of the
components of electron density ��1�2 and ��2�2 in the region
of the overlapping of two split parts of the packet. It is clear
that these oscillations originate from the interference be-
tween the states of different spectrum branches. When two
parts of the packet move away from each other, the ampli-
tude of the oscillations decreases. The period of these oscil-
lations along the x direction depends on the initial width of
the packet d and equals to �x=�d2�1+�2t2� /��t2. So, if
inequality �t�1 takes place, the period of oscillation de-
creases with time and equals to �x=�md4 /��t2 and, when
�t
1, the oscillation period does not depend on the time
�x=�� /m�.

To illustrate the evolution of the electron probability den-
sity ��x ,y�= ��1�2+ ��2�2, we plot this function using Eqs.
�14a� and �14b� in Fig. 1�a� for the moments of the time t
=0, t=1,5, and t=7 �in the units of �0=�−1�. The calcula-
tions were made for the parameters GaAs/InGaAs electron
system m=0.05m0 and �=3.6
106 cm s−1 and the packet
parameters d=10−5 cm and k0=2.5
105 cm−1. Here one
can clearly see that initial Gaussian wave packet �Eq. �7��
splits up at t�0 into two parts, propagating along the x
direction. The width of each part of the packet increases in
time as for the case of the free particle.

To analyze spin dynamics, one can consider the time evo-
lution of the spin density,

si�x,y,t� =
�

2
��1

�,�2
���̂i��1

�2
� . �15�

Using Eqs. �14a� and �14b� we immediately find the expres-
sion for spin density sz= �

2 ���1�r , t��2− ��2�r , t��2�, which
demonstrates the oscillatory behavior as a function of x �see
Fig. 1�b��. The period of oscillation here is the same as for
the functions ��1,2�x , t��. For the spin density sy�x , t�, the
following result can be obtained:

sy�x,t� =
�

��Lyd�1 + �2t2�exp�−
„x − ��k0/m − ��t…2

d2�1 + �2t2� �
− exp�−

„x − ��k0/m + ��t…2

d2�1 + �2t2� �� . �16�

According to this equation both parts of the initial wave
packet, moving along the x direction with different veloci-
ties, are characterized by the opposite spin orientation �at the

same time the average spin component S̄y =�sy�x , t�dr is
equal to zero�.
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Note that the components of wave function depend only
on coordinate x that leads to p̄y = py =0, however, the velocity
v̄y�t��0. Really, by using the definition in Eq. �4�, it is not
difficult to obtain

v̄x�t� =
�k0

m
, v̄y�t� = − � sin�2k0�t�exp�− ��t

d
�2� .

�17�

As follows from these equations, the average v̄y velocity
performs the oscillations in the transverse direction �Zitter-
bewegung or jittering� with the frequency 2k0� and the
damping time is determined by the parameter d /�. It is not
difficult to show that the space form of the packet depends
on the initial spin orientation. If at the moment t=0 the spin
is aligned parallel to the y axis, the wave functions at t�0
can be written as

��x,t� = �G�x + �t,t��Sy=�/2,

where �Sy=�/2 is the eigenfuction of the �̂y operator and �G

describes the evolution of a spinless particle. So, in this case,
there is no packet splitting.

III. EVOLUTION OF TWO-DIMENSIONAL PACKETS AT
THE PRESENCE OF SPIN ORBIT COUPLING

We consider now the evolution of 2D wave packet in the
presence of spin orbit coupling. Let us consider the follow-
ing form of the Gaussian packet at the initial moment t=0:

��r,0� = C exp�−
r2

2d2 +
ip0xx

�
��1

0
� = f�r��1

0
� , �18�

where p0x=�k0 is the average momentum and C=1 /��d.
Then, using a Green’s function method, we arrive �after
some algebra� at the following equations for the components
of spinor �in the momentum space�:

C1�p,t� =
d

���
cos��pt

�
�


exp�−
ip2t

2m�
−

p2d2

2�2 −
k0

2d2

2
+

pxk0d2

�
� ,

�19a�

C2�p,t� = −
d

���

px + ipy

p
sin��pt

�
�


exp�−
ip2t

2m�
−

p2d2

2�2 −
k0

2d2

2
+

pxk0d2

�
� .

�19b�

After that �1,2�r , t� can be obtained directly by 2D Fou-
rier transform of C1,2�r , t�,

�1�r,t� =
d

��
exp�−

k0
2d2

2
�	

0

�

exp�− i
q2�t

2m
−

q2d2

2
�


J0�q�r2 − k0
2d4 − 2ik0d2x�cos��qt�qdq ,

�20a�

�2�r,t� = −
id
��

x + iy − ik0d2

�r2 − k0
2d4 − 2ik0d2x


exp�−
k0

2d2

2
�	

0

�

exp�− i
q2�t

2m
−

q2d2

2
�


 J1�q�r2 − k0
2d4 − 2ik0d2x�sin��qt�qdq ,

�20b�

where J0 and J1 are the Bessel functions of the zeroth and the
first orders. These expressions become simpler if the average
momentum of a wave packet is equal to zero, i.e., p0x=0. In
this case,

FIG. 1. �a� The electron probability density ��x , t�= ��1�2+ ��2�2 and �b� spin density sz. The dashed, thick, and thin lines correspond to
different moments of the time, namely t1=0, t2=1,5, and t3=7�in the units �0=�−1�.
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�1 =
d

��
	

0

�

qJ0�qr�cos��qt�exp�− i
q2�t

2m
−

q2d2

2
�dq ,

�21a�

�2 =
d

��

y − ix

r
	

0

�

qJ1�qr�sin��qt�exp�− i
q2�t

2m
−

q2d2

2
�dq .

�21b�

As in the case of a 1D packet, the shape of the full elec-
tron density ��x , t�= ��1�2+ ��2�2 at t�0 depends on the pa-
rameter �= m2�2d2

�2 . In Fig. 2, we show the electron density
��x , t� for the case p0x=0 at the time t=5 �in the units of d

� �
and �=2,7. As one can see, the spin orbit coupling qualita-
tively changes the character of the wave packet evolution, so
that during the time, the initial Gaussian packet turns into
two axially symmetric parts. As follows from our analytical

and numerical calculations, the outer part propagates with
group velocity, which is greater than �, and the inner part
moves with group velocity lower than �. If ��1, i.e., the
packet is narrow enough, its evolution remained the standard
broadening of the Gaussian packet of free particle.

In Fig. 3�a� it is shown that the packet evolution for the
case p̄0x=�k0�0. It is clear that in this case, the cylindrical
symmetry is absent and two maximums of the electron den-
sity spread along the x direction with unequal velocities.
Each one of these two parts is spin polarized. Figure 3�b�
illustrates the distribution of the spin polarization sy�x ,y , t�
for the initial state, which is polarized along z axis �Eq. �18��.
It is a smooth function, which has a different sign, in the
regions for two maximums of the electron density.

When p̄x�0 the motion of the wave packet centers along
x, accompanied by the oscillation of the packet center in a
perpendicular direction or Zitterbewegung. Below we con-
sider the effect of damping of Zitterbewegung oscillation for
2D packet, which was not predicted in Ref. 10.

Using Eqs. �20a� and �20b� we calculate the average value
of the operator ŷ= i� �

�py
and obtain �for t�0� the result

ȳ�t� = −
2d2

�
exp�− �k0d�2�	

0

�

sin2��pt

�
�


exp�−
p2d2

�2 �I1�2pk0d2

�
�dp . �22�

It is not difficult to show that this result for ȳ�t� coincides
with the expression for −x̄�t� in Ref. 5. In order to demon-
strate this, one needs to make a summation in Eq. �8� from
Ref. 5 using the expansion for modified Bessel function,16

I1�z� = �
n=0

�
�z/2�2n+1

n ! �n + 1�!
.

In the case when wave packet is wide enough and the
inequality a=dk0
1 takes place, one can obtain a simple

FIG. 2. �Color online� The electron probability density ��x , t�
= ��1�2+ ��2�2 for the initial-state Gaussian packet Eq. �18� with
p0x=0 at the time t=5 �in the units d /��.

FIG. 3. �Color online� Electron density ��x , t�= ��1�2+ ��2�2 �a� for k0d=2 at the moment t=5 �in units d /�� and spin density sz�x ,y , t�
�b� at the moment t=1,5 �in units d /��.
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asymptotic formula for ȳ�t�. To show this, we represent Eq.
�22� as a sum of two terms,

ȳ�t� = − d exp�− a2��	
0

�

exp�− u2�I1�2au�du

− 	
0

�

cos�2�tu

d
�exp�− u2�I1�2au�du�

= − d exp�− a2�� 1

2a
�exp�a2� − 1� − Z� , �23�

where we denote pd
� =u; Z=Re��0

�exp�−u2+ i 2�tu
d �I1�2au�du�.

To evaluate Z, we replace the modified Bessel function
I1�2dk0u� by its asymptotic formula I1�x�=ex /�2�x, which is
valid for the case k0d
1. After that, the integral with respect
to u can be evaluated using the stationary phase method that
leads to the simple result,

Z =
1

2kd
exp�a2 −

�2t2

d2 �cos�2�k0t� .

Substituting this expression into Eq. �23�, we finally have

ȳ�t� = −
1

2k0
�1 − exp�−

�2t2

d2 �cos�2�k0t�� . �24�

The last result demonstrates clearly that ȳ�t� experiences the
damped oscillations with the frequency 2�k0 decaying for
the time d

� . In the real 2D structures, the frequency of the
Zitterbewegung has the order of 1011–1012 s−1 for k0
�10−5–10−6 cm. The amplitude of the Zitterbewegung is
proportional to the electron wavelength in x. In Fig. 4 we
plot the function ȳ�t� determined by Eq. �22�, which demon-
strates �in accordance with Eq. �24�� the effect of Zitter-
bewegung damping. When t


d
� the oscillations stop and the

center of the wave packet shifts in the direction perpendicu-
lar to the group velocity at the value of 1 /2k0. Since the
packet moves with constant velocity, the time oscillations of
ȳ�t� can be easily converted to the oscillation of the wave
packet center in real x ,y space.

IV. CYCLOTRON DYNAMICS OF 2D WAVE PACKET IN A
PERPENDICULAR MAGNETIC FIELD

In this section we examine the cyclotron dynamics of
electron wave packet rotating in a magnetic field B�0,0 ,B�,
which is perpendicular to the plane of 2D electron gas. In
this case, the one-electron Hamiltonian including the Rashba
term reads

H =
�p̂ + eA/c�2

2m
+ ���̂y�p̂x + eAy/c� − �̂xp̂y� + g�B�z.

�25�

Here e is the electron charge, m is the effective mass, p̂x,y are
the momentum operator components, � is the parameter of
Rashba coupling, g is the Zeeman factor, and �B is the Bohr
magneton. Bellow, we use the Landau gauge for the vector
potential A= �−By ,0 ,0�. Then the eigenvalues and the eigen-
functions of the Hamiltonian �25�, indicating the quantum
numbers n, kx, and s= �1, and corresponding to two
branches of levels can be evaluated analytically �see, e.g.,
Ref. 17�

En
� = ��cn � �E0

2 +
2n�2�2

�B
2 �1/2

, �26�

where E0
+=

��c

2 −g�BB is the zero Landau level, n
=1,2 ,3 , . . ., �c= eB

mc is the cyclotron frequency, and �B

=� �

m�c
is the magnetic length. The eigenspinors are

�n,kx

+ �r� =
eikxx

�2�An
�− iDn�n−1�y − yc�

�n�y − yc�
� ,

�n,kx

− =
eikxx

�2�An
� �n−1�y − yc�

− iDn�n�y − yc�
� , �27�

�0
+ =

eikxx

�2�
� 0

�0�y − yc�
� .

Here coefficients Dn are given by Dn=�2n�� /�B /E0

+�E0
2+2n�2�2 /�B

2 , An=1+Dn
2, �m�y−yc� are linear oscillator

wave functions, and yc=�B
2kx is the center of oscillator. It

should be noted that for enough weak magnetic field, the
dependence of energy En

− on quantum number n �n
1� re-
sembles the behavior of the function 	−�p� �Eq. �3��. Namely,
for small n the values of energy En

+ are negative, decreasing
with n, as for the hole states.

Using Eqs. �26� and �27� we can obtain components of the
matrix Green’s function, which permits us to find the time
evolution of the initial state. The usual definition,

Gij�r,r�,t� = �
s=�

	 dkx�
n=0

�

�n,kx,i
s �r,t��n,kx,j

�s �r,0� �28�

yields

G11�r,r�,t� =
1

2�
	

−�

+�

dkxe
ikx�x−x���

n=0
fn+1�t��n�y − yc�


�n�y� − yc� , �29a�

FIG. 4. The average coordinate of ȳ�t� versus time for the packet
with k0d=25.
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G21�r,r�,t� =
1

2�
	

−�

+�

dkxe
ikx�x−x���

n=0
gn+1�t��n+1


�y − yc��n�y� − yc� , �29b�

where the time-dependent coefficients fn�t� and gn�t� are
given by

fn�t� = e−i�cnt�cos �nt − i�1 −
2

An
�sin �nt� , �30a�

gn�t� = e−i�cnt2Dn

An
sin �nt , �30b�

and �n= 1
�
�E0

2+ 2n�2�2

�B
2 .

Let the initial state coincide with the wave function of the
coherent state in a magnetic field

��r,0� =
1

���B
2

exp�−
r2

2�B
2 +

ip0xx

�
��1

0
� . �31�

Such choice of wave function ��r ,0� is motivated by the
following: as it is well known, in the absence of spin orbit
coupling the dynamics of coherent states in a magnetic field

looks like the dynamics of a classical particle. To analyze the
time evolution in our case, one needs to calculate the wave
function at t�0. Straightforward algebra, by using Eqs.
�29a�, �29b�, and �31�, leads to the final expressions

�1�r,t� =
1

�2��B
�
n=0

fn+1�t�
2nn!

	
−�

+�

due��x,y,u��− u�nHn� y

�B
− u� ,

�32a�

�2�r,t� =
1

2��B
�
n=0

gn+1�t�
2nn ! �n + 1

	
−�

+�

due��x,y,u��− u�n


Hn+1� y

�B
− u� , �32b�

where ��x ,y ,u�= iu x
�B

−
�p0x�B/�−u�2

2 − u2

4 −
�y/�B−u�2

2 .
The electron density obtained by numerical evaluations of

the integrals �Eqs. �32a� and �32b�� is represented in Fig. 5
for relatively weak spin orbit coupling and strong magnetic
field. The calculations were made for the material parameters
of two-dimensional GaAs heterostructure m=0.067m0, �
=3.6
106 cm s−1, g=−0.44, B=1T, and k0x= p0x /�=1.5

106 cm−1. It is not difficult to verify that the series in Eqs.

FIG. 5. �Color online� Evolution of coherent wave packet �Eq. �31�� in a perpendicular magnetic field: �a� the initial electron density Eq.
�31�, �b� two split packets at time t0�452�

�c
, �c� restored packets at time 2t0�902�

�c
, and �d� randomized electron density for large time.
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�32a� and �32b� converges very rapidly as n increases. So for
our parameters, it suffices to take nmax=25 to calculate the
components �1�r , t� and �2�r , t�. At t�0 the initial wave
packet �Fig. 5�a�� splits in two parts �Fig. 5�b��, which ”ro-
tate” with different incommensurable cyclotron frequencies.
In accordance with Eqs. �26�, these frequencies can be deter-
mined by the expression,

�c
� =

En+1
� − En

�

�

= �c ��E0
2 + 2�n + 1�

�2�2

�B
2 ��E0

2 + 2n
�2�2

�B
2 .

�33�

The effective n in this equation is connected with cyclotron
radius via relation Rc�t�=

p0x

m�c
=�2n�B. Believing that �

= 2n�2�2

�B
2E0

2 �1, i.e., in the case of a weak spin orbit coupling or
strong magnetic field, one can obtain �from Eq. �33�� the
approximate expression for the difference between cyclotron
frequencies

�c
+ − �c

− = 2
�2m

E0
�c. �34�

Figure 5�b� demonstrates, for the case ��1, the distribution
of electron density at the moment when two parts are located
at opposite points of the cyclotron orbit. The correspondent
time can be determined from the relation ��c

+−�c
−�t0=� and,

hence, for the GaAs structure we will have t0= �

�c
+−�c

−

= �
�c

E0

2�2m
=452�

�c
.

After some cyclotron periods, two split packets merge
again, which are demonstrated in Fig. 5�c�. With time due to
the effect of the broadening, electron probability distributes
randomly around cyclotron orbit, which is shown in Fig.
5�d�.

In the opposite case of relatively strong spin orbit cou-
pling or weak magnetic field when the inequality �= 2n�2�2

�B
2E0

2


1 holds true, the difference between two cyclotron fre-
quencies, as it follows from Eq. �33�, equals to �c

+−�c
−

=
�2�
�n�B

. For the InGaAs structure with parameters m=0.05m0,
�=3.6
106 cm s−1, g=−10, B=1T, and k0x= p0x /�=1.5

106 cm−1 we have �=8 and the divergence time t0

�2.32�
�c

.
One can analyze the effects of the periodic splitting and

reshaping of the wave packet in magnetic field, as well as the
process of distribution around cyclotron orbit, by considering
the time dependence of the cyclotron radius determined as
R�t�=��x̄�t��2+ �ȳ�t��2. To do this we represent the average
value of coordinates x1=x and x2=y as

x̄i =	 �1
��r,t�xi�1�r,t�dr +	 �2

��r,t�xi�2�r,t�dr , �35�

where �1 and �2 are determined by Eqs. �32a� and �32b�. The
lengthy calculations �see the Appendix� eventually yield the
explicit expressions for the x̄�t� and ȳ�t�,

x̄�t� = −
�B

3
e−p0x

2 �B
2 /3�2�cos �ct�

k=0
Sk�t�H2k+1�i�2

3
p0x�B/��

+�sin �ct�
k=0

Pk�t�H2k+1�i�2

3
p0x�B/���� , �36a�

ȳ�t� = q�B
2

+
�B

3
e−p0x

2 �B
2 /3�2�cos �ct�

k=0
Pk�t�H2k+1�i�2

3
p0x�B/��

− �sin �ct�
k=0

Sk�t�H2k+1�i�2

3
p0x�B/���� . �36b�

As one can see, the dependence of x̄�t� and ȳ�t� on the time
are determined by both factors cos �ct and sin �ct, as well as
by functions,

Sk�t� = i
�− 1�k

k!
� 1

12
�k

��k+2cos �k+1t sin �k+2t

− �k+1cos �k+2t sin �k+1� , �37a�

Pk�t� = i
�− 1�k

k!
� 1

12
�k�cos �k+1t cos �k+2t + ��k+1�k+2

+ 4�k + 2

k + 1

Dk+1Dk+2

Ak+1Ak+2
�sin �k+1t cos �k+2t� ,

�k =
Dk

2 − 1

Dk
2 + 1

, �37�

which describe the additional time dependence due to spin

precession. Note that the frequencies �k= 1
�
�E0

2+ 2k�2�2

�B
2 are

incommensurable. As a check on this formalism, it is not
difficult to show that in the absence of Rashba coupling ��
=0�, as it follows from Eqs. �36a� and �36b�,

x̄�t� = p0x�B
2 /� sin �ct, ȳ�t� = p0x�B

2�1 − cos �ct� , �38�

that corresponds to the classical motion of charged particle in
the magnetic field with a constant radius.

The time dependence of the cyclotron radius R�t� in the
system with Rashba is presented in Fig. 6. It is clear that the
oscillations of R�t� are connected with the effects of periodic
splitting and reshaping of wave packets. The radius has the
minimal values at the moments when two parts of the packet
are located at the opposite point of cyclotron orbit. This situ-
ation is shown in Fig. 5�b�. The first minimum is labeled by
the letter b in Fig. 6. One can see that the time of the first
minimum approximately coincides to our estimation made
above, t0�45Tc. The radius is maximal at the moments of
the packet reshaping, which is shown in Fig. 5�c� �two of
these points are labeled by the letters a and c�. Due to the
effects of incommensurability of the cyclotron frequencies
and the packet broadening, the amplitude of the oscillations
decreases with the time. After that, the electron density dis-
tributes around cyclotron orbit, the amplitude of the oscilla-
tion ceases, and the electron-density distribution acquires the
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no-regular character �Fig. 5�d��. Note here that the numerical
simulation of the radius of electron orbit R�t� was made in
Ref. 15, only for small t, that corresponds to the time interval
near the first maximum in Fig. 6.

We evaluate also the distribution of the electron density
for the structure with relatively strong spin orbit coupling.
For such systems, instead of the repeated process of the split-
ting and restoring of the wave packet as discussed above, the
transition to the irregular distribution along the cyclotron or-
bit can be realized for the time of the order of one cyclotron
period.

V. CONCLUSIONS

We have analyzed the evolution of 1D and 2D wave pack-
ets in 2D electron gas with linear Rashba spin orbit coupling.
We showed that the electron packet dynamics differs drasti-
cally from usual quantum dynamics of electrons with para-
bolic energy spectrum. Depending on the initial spin polar-
ization packet splits in two parts which propagate with
different velocities and have different spin orientation. At the
time when two parts of the wave packet overlap, the packet
center performs oscillations in much the same way as for a
relativistic particle. The direction of these oscillations is per-
pendicular to the packet group velocity. When the distance
between split parts exceeds the initial width of the packet,
these oscillations stop.

In the 2D semiconductor structures placed in a perpen-
dicular magnetic field, the spin orbit coupling changes the
cyclotron dynamics of charged particles. As in the absence of
magnetic field, the initial packet splits in two parts, which
rotate in a perpendicular magnetic field with different incom-
mensurable cyclotron frequencies. As a result, after some
cyclotron periods these parts join again. The corresponding
time t0 essentially depends upon the ratio of the energy of
spin orbit coupling and the distance between Landau levels
�Eq. �26��: �= 2n�2�2

�B
2E0

2 . Thus, for the systems with weak and

relatively strong spin orbit couplings, e.g., GaAs and InGaAs
heterostructures, the time t0 equals to 45Tc and 2,3Tc, re-
spectively.

The splitting and Zitterbewegung of the wave packets in
nanostructures with spin orbit coupling can be observed ex-
perimentally in low-dimensional structures. In particular,
these effects should determine the electron dynamics and
high-frequency characteristics of the field effect transistor by
Datta and Das18 and other spintronic devices. Simple estima-
tions show that, during the time of the wave packet propa-
gation through the ballistic transistor channel where the dis-
tance between emitter and collector is of the order of 1 �m,
the distance between two split parts of the wave packet be-
comes comparable with its initial size. In this situation, the
high-frequency characteristics of the field effect transistor
should be substantially affected by the spin orbit coupling.
Moreover, the atypical semiclassical dynamics of a spin orbit
system placed in a magnetic field will influence the shape of
the cyclotron resonance line in 2D systems with spin orbit
coupling. An important feature of these experiments is that
the electron transport is in the ballistic regime and, thus, the
momentum relaxation time � should be considered much
more greater compared to the typical splitting time.
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APPENDIX

This Appendix provides some of the details involved in
obtaining the average value of the position operator given by
Eqs. �36a� and �36b�. According to Eq. �35�,

ȳ�t� = ȳ1�t� + ȳ2�t� . �A1�

Consider the calculation of the first term ȳ1�t�. Using the
initial wave function �Eq. �31��, we obtain

ȳ1�t� =	 	 dr�dr�

��B
2 exp�−

r�2 + r�2

2�B
2

+
ip0x�x� − x��

�
�	 G11�r,r�,t�yG11

� �r,r�,t�dr .

�A2�

The last integral in this equation is denoted as

M11
y =	 G11�r,r�,t�yG11

� �r,r�,t�dr . �A3�

Then substituting Eq. �29a� into Eq. �A3� and using the
well-known formula for a linear harmonic-oscillator func-
tion,

FIG. 6. Cyclotron radius plotted versus the time �for the same
parameters as in Fig. 5�. The distance between maximums and
minimums of R�t� marked by arrows is approximately equal to
80Tc, time is measured in units of cyclotron period Tc= 2�

�c
. The

points a, b, c, and d correspond to the same moments of time as in
Figs. 5�a�–5�d�, respectively.
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−�

+�

y�n�y − yc��k�y − yc�dy

=
�B

�2
��n�k,n−1 + �n + 1�k,n+1� + yc�n,k, �A4�

we will have

M11
y =

1

2�
	

−�

+�

eikx�x−x����y�,y�,t,yc�dkx. �A5�

Here

��y�,y�,t,yc� =
�B

�2
�
n=0

�nfn+1�t�fn
��t��n�y� − yc��n−1�y� − yc�

+
�B

�2
�
n=0

�n + 1fn+1�t�fn+2
� �t��n�y�

− yc��n+1�y�−yc� + yc�
n=0

�fn+1�t��2�n�y�

− yc��n�y − yc� , �A6�

where the coefficients fn�t� are given by Eq. �30a�. We cal-
culate ȳ1�t� by substituting Eqs. �A5� and �A6� into Eq. �A2�.
The resulting integrals can be evaluated by using Gaussian
transformation16

1
��
	

−�

+�

e−�x − y�2
Hn�y�dy = �2x�n, �A7�

1
��
	

−�

+�

e−�x − y�2
yndy =

Hn�ix�
�2i�n .

Finally, we obtain

ȳ1�t� =
�B

6
exp�−

�p0x�B�2

3�2 ��
k=0

�k�t�H2k+1�i�2/3p0x�B/�� ,

�A8�

where

�k�t� =
i

k!
�−

1

12
�k

�fk+1
� �t�fk+2�t� + fk+1�t�fk+2

� �t� − 2�fk+1�t��2� .

�A9�

Performing the same kind of calculation, we have �for ȳ2�t��

ȳ2�t� =
�B

6
exp�−

�p0x�B�2

3�2 ��
k=0

�k�t�H2k+1�i�2/3p0x�B/�� ,

�A10�

where

�k�t� =
i

k!
�−

1

12
�k

�gk+1
� �t�gk+2�t� + gk+1�t�gk+2

� �t� − 2�gk+1�2�

�A11�

and the coefficients fk�t� and gk�t� in Eqs. �A9� and �A11� are
determined by Eqs. �30a� and �30b�. The preceding expres-
sions immediately lead to the average value ȳ�t� given in Eq.
�36b�. The evaluation of x̄�t� can be obtained by following
the procedure similar to that, which led to Eq. �36a�.
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